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ABSTRACT

Let G be a group with a weight (norm) w, and thus a distance. Let H
be a normal subgroup of G. A basic lemma connects w-decomposition in G
with that in the factor group G/H. One application is the justification of a
general, operationally useful, concept of step-by-step decoding of G into H.
A second application is to the study of a question of Slepian's: When can a
set of unique coset representatives, one element of minimal weight from
each H-coset, be chosen s0 that this set of representatives is closed under
descendance? A sufficient condition, independent of H, is proved. In

particular, the answer is positive for groups G with Hamming or Lee weight
functions.



STEP-BY-STEP DECODING IN GROUPS WITH A
WEIGHT FUNCTION (PART I)

0. INTRODUCTION

The considerations of this paper grow out of work in the theory of error-
correcting code groups, but are placed in a more general context than is
usual there. We consider groups with a weight function (norm) w in terms
of which a distance can be defined. We are particularly interested in the
theory of those cases where the triangle inequality w(f) + w(g) > w{fg) be-
comes equality. A very elementary knowledge of some concepts in group
theory and in the theory of order relations is assumed.

Section 1 reviews some standard properties of weight and distance on
a group G, not necessarily finite or commutative, Section 2 uses the triangle
equality for weight to define such concepts as w-decomposition in G and a
partial ordering of G called descendance. The useful lemma (2. 3) relates
w-decomposition in a group G to w-decomposition in a factor group G/H.
Section 3 defines and justifies step-by-step decoding, a refinement of Slepian
decoding. The problem is: given some element in an H-coset, to find an
element of minimal weight in that coset. Section 4 gives some results on a
question of Slepian's: Given a group G with a weight function w, and a normal
subgroup H of G. When is it possible to choose a set S of unique represent-
atives for H-cosets, one element of minimal weight from each coset, such
that every descendant of an element of S is also in S?

1. WEIGHT AND DISTANCE FUNCTIONS ON A GROUP

Let G be a group written multiplicatively, and with identity element e.
Let w and d be mappings into the real numbers of G and of G X G respectively.

Released for publication June 22, 1961,
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Given w or d, we define d or W respectively by
(1.1.1)  qt g =witlg),
(1.1.2)  wl(g) =dle,g),
for all elements f, g in G.
Given such a mapping w or d, wé list some properties that may or

may not hold for all f, g, h in G:

(1.2.1) wle) =0; (1.3.1) d(g, g =0;

(1.2.2) wig) >0ifgte; (1.3.2) dt, g >O0iffé¢ g
(1.2.3) wi@ =wg ) (1.3.3) d(f,g) =dig n;

(1,2.4) w(f) + wig)>wi(fg); (1.3.4) d(f,g0 + d(g h)>d(f, h);
(1.2.5)  wif 'gh=w(g);- (1.3.5)  d(fh, gh) =d(f, g);

(1.3.6) d(hf, hg) =d({, g).
We then have the following proposition:

(1.4) Let w be a mapping of G into the reals. Then the construction
wil1.1) g (.12 2. suchthat w = wand (1.3.6) holds for d. If any of
the properties (1. 2, 1) through (1, 2, 5) holds for w, the corresponding pro-
perty (1, 3. 1) through (1.3.5) holds for d.

Let d be a mapping of G X G into the reals such that (1.3.6) holds.
Then the construction d(l' 1. 25) w (1.1. 1; d is such that d = 4. Moreover,
if any of the properties (1.3, 1) through (1.3.5) holds for d, then the cor-
responding property (1. 2. 1) through (1. 2, 5) holds for w.

We give a sample of the straightforward verifications. Suppose that
(1.3.6) holds for d, to show thatd =d. We have d(f, g) = w(f" 'g) =d(e,t g =
d(f, g).

Suppose that bgth (1.3.6) and (1.3.4) hald for d. To show that (1,2.4)
holds for w, that is w(f) + w(g) > wifg); that is, d(e, f) + d(e, g) >d(e, fg} by
the definition (1.1.2); that is, d(f" 1, &) + dle, g) > d(f™2, g) using (1.3.6); but



. this holds by (1. 3. 4).
In what follows, a mapping w with properties (1. 2. 1) through (1. 2. 5)
is called a weight function on G. The corresponding mapping d of (1.1.1)

is called a distance function, and will be represented by d. If the range

of w is a well-ordered subset of the reals (> 0) in the natural ordering,
we say that w is RWO. In this case, every subset S of G must have an
element of least weight. In particular, if w is RWO, there is a least non-
zero weight on G.

The following construction yields an interesting class of weight functions
on G:

(1.5) Let A be a set of generators of a group G.. Let the set A be
closed under inversion and under conjugation by elements of G, that is, if

1 1

aisinAand f is inG, thena ~ and f afare in A, Define a function w

. on G by: w(e) =0; if g £ e, w(g) is the minimum length t of expressions

g=2a;...a, for g as a product of elements in the generating set A. Then
w is an RWO weight function. ‘

Suppose that we are given a set of groups (}1 with identity elements €

for i in the index set I. We consider the direct product group G = 11TG1

whose elements are the sets g = (gi), where each component g of g is in

Gi’ and where the relation g = e holds for all except a finite number of

components. Multiplication is defined by fg = h, where hi = figi' We then
have
(1.6) Let G =HG1 be a direct product of groups Gi with weight functions
w,. Then
. (1.6.1) w(g) = 213 wi(gi)

ldefines a weight function w on G.



We mention some special classes of weight functions as examples. They
can be defined either through (1.5) or (1. 6).

(1.7.1) If we take A = G in (1. 5), the group is said to have the coarse weight
function. All elements other than the identity then have weight 1.

(1.7.2) Let G be a direct product group. Take A in (1. 5) as the set of all
elements g such that g = for every component except one. The group G
ig then said to have a Hamming weight function. Equivalently, give the
groups G1 coarse weight functions Wy, and define the weight function on G

by (1.6). *

(1.7.3) Let G be a direct product of cyclic groups Gi’ each with a fixed gene-
rating element bi' Take A as the set of all elements g such that g =¢ for
every component except one, this component gj being either b j orb j'l.

The group G is then said to have a Lee weight function.

The following properties deal with a subgroup of a group with weight
function.

(1.8) Let the group G have an RWO weight function w, and let H be a normal
subgroup of G. Then an RWO weight function on the factor group G/H is de-
fined by w(Z) = min w(z) for z in Z, where Z is any H-coset.

If we do not require w on G to be RWO, and define w(Z) = inf w(z) for
z in Z, then the function w on G/H does not necessarily satisfy (1. 2. 2),

(1.9) Let G be a group with a weight function w and the corresponding
distance function d. Let H be any subgroup of G, and g be any element of
!G. Then d(h, g) is minimal for h in Hif and only if h = gf 1, where f is

isome element of minimal weight in the coset Hg.
By definition, d(h, g) = w(h-lg). Then f =h~ lg runs through the coset

" Hg as h runs through the group H.
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Remarks. Slepian (1956) has made property (1.9) the basis of a decoding

procedure for error-correcting group codes. See also Hamming (1850) and
Lee (1958).

2. w-DECOMPOSITION

Let G be a group with a weight function w. We say that a relation
[g: g, ... g] holds in G and defines a w-decomposition of g if

(2.1) g =gy 8&>
w(g) = wig)) + ... +w(g),
for g, g, in G. The relations [g; gy .-, &) and [g;hy ... hs] imply
- SPRRTON - PR DY - AP A ,

A w-decomposition of g is called trivial if one of the factors gj of (2.1)
is equal to g, the other factors then necessarily being equal to the identity
element e of G. We call g £ e in G an atom if all w-decompositions of g
are trivial. We call a w-decomppsition of g atomic if all the factors g of
the decomposition are atoms. An atomic w-decomposition of an element g
in G necessarily exists if w is RWO. An example at the end of this section
shows that the set of atoms occurring in an atomic w-decomposition of g
need not be uniquely determined by g.

Any factor g; occurring in any w-decomposition of g is called a descendant
of g, the factors g and g of (2. 1) being called left and right descendants
respectively. An element f is a right descendant of g if and only if
wig) = wigt' ) + wi). .

We write f< g if { is a descendantof g. The relation of dgscendance
glves a partial ordering of g (as do the relations of left or right descendance),

that is,
(2.2) f< gand g< fifandonly if f = g,
f< gand g< himply f< h.




An atom of G can be described as an element g f e whose only descendants
are g and e. The atoms in the construction (1. 5) are the elements unequal
to e in the generating set A,

The following useful lemma relates w-decomposition in a group G to
that in a factor group G/H:

(2.3) Given a normal subgroup H of a group G with an RWO weight func-
tion w, let the fac.. group G/H have the induced weight function w of (1. 8).
(2.3.1) If z is an element of minimal weight in the coset Z = Hz and if the
relation [ z; Zysees zt] holds in G, then each Zs 1<i<t, isan elemént of

minimal weight in the coset Z, = Hz,, and the relation [ Z; Zys s Zt] holds

i i’
in G/H. ‘
(2.3.2) Conversely, if the relation[Z; Z, ..., Zt] holds in G/H and if z,
is an element of minimal weight in Zi’ 1<i<t thenz = Zy.. 2y is an ele-~

ment of minimal weight in Z, and the relation [ z; Zyseees zt] holds in G.
To prove (2. 3.1), it follows from the definition (1. 8) of the induced
weight function on G/H that w(Zi) <w(z), 1<i<t. Thus

w(Z)+ ... +w(Z) < wiz )+, +w(z;t) by (1.8),

= w(z) = w(Z) by hypothesis,

< w(Zl) +... + w(Z,) by the triangle in-

t

Since the extreme terms are identical, there must be equality throughout. The
first equality implies the set of equalities W(Zi) = W(zi).
To prove (2.3.2), we have
w(z)sw(zl) + ... +w(zt) by (1.2.4) on G,
=w(Z,) + ... + w(Z)) =w(2) by hypothesis,
< w(z) by (1. 8).

equality (1.2.4) on G/H.

&



Since the extreme terms'afe identical, there is equality throughout, and
the converse holds.

We give some concrete illustrations of weight functions. Let G be the
cyclic group of order 8 written as the group of integers with addition modulo
8. We give two weight functions w and w on G in the following table.

glo 1 2 3 4 5 6 1

wig) |0 1 2 3 4 3 2 1

wglo 1 2 1 11 2 1

g

Both weight functions are examples*of construction (1, 5) with the ge;lerating
gset A as the set of elements of weight 1 in the table. The weight function w
is a Lee weight function (1.7.3). The atomic ;-decompositions of the ele-
ments 2 and 6 in (G,vhv’) are 2 = 1+1 =5+5 =3+7, 6 =3+3 =7+7 = 1+5, The
partial ordering of descendance in the two cases is represented in the fol-

lowing diagrams.

4 6
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3. STEP-BY-STEP DECODING

Here G is a group with a RWO weight function w, H is a normal sub-
g;‘oup of G, and the factor group G/H has the induced weight function w of

(1.8), We call H a code group. We call a mapping g -~ g' of G into Ha
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decoding function if d(g, g') < d(g, h) for all h in H. A decoding function

maps each g of G into a closest element g' in H,

The word classifying can replace decoding here. For each element h

in the subgroup H, let S(h) be the set of all elements g in G that are as close toh

as to any other element of H. Then to decode an element g of G into a

closest element h of H is to determine that g belongs to the class S(h).

Consider a mapping of G into H,
S |
(3.1) g—-g =gf °,

where { is some element of minimal weight in the coset Hg. Then by
(1.9), the mapping (3. 1) is a decoding function,

The concept f)f step-by-step decoding to be int;'oduced adds nothing in
theory to what has just been said. It is of interest if an operational point
of view is taken. It may be thought of as justifying the piece-by-piece
construction of an element f of minimal weight in the coset Hg, going from
an element g of G to a closest code element g!' of H in a series of steps.

Consider a mapping of G into G,

(3-2) g_,gz-l’

where z is a right descendant of some element of minimal weight in the
coset Hg, z being the identity e of G 1f and only if Hg = H, Consider a
chain formed by applications of this mapping,

(3.3) gzgo-’gl"’gz oee

_ -1 . . .

where 8,1 =82; asin (3.2). We wish to prove:

(3.4) There is a first element gj in the chain (3. 3) such that gj is in H.
The mapping g - gj is a decoding function for G over the code group H.

Proof. LetY, = Hg, and Z, = Hzi. Since by definition z, is a right

i

_descendant of an element of minimal weight in Yi’ it follows from (2.3.1)
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that z; is an element of minimal weight in the coset Z,, and that the relation
[Yi; Y, Zi] holds in G/H., Thus for all i, the relation [Yo; Y, 10 Zp 2y
cer s ZO] holds, and each z is an element of minimal weight in Zi' Since the
weight function is RWO, there must exist some index j such that Yj = H,

Let f = Z5.1%- -+ %o Then the relation [ Y,; Zj-l’
(2. 3.2) the relation [{; Zj.qs eee s zo] holds in G, and f is an element of

.+« » Zy] holds, and by

minimal weight in Y, = Hg. Thus, g - gf~1 is an element of H at minimal
distance from g, completing the proof of (3. 4).

Note that the elements z # e of (3. 2) can “be restricted to be atoms of
G. Note also that in (3. 1) or (3. 2) the element f or z can be required to be
the same for every g in an H-coset.

Remark. The concept of step-by-step decoding is regarded here as a
refinement of the decoding principle introduced in Slepian (1956), A planned
second part to the present paper will consider concrete applications. Spme
concrete examples can be found in Prange (1958, 1959)., See also Wells

(1960) and Peterson (1961),

4. SUBSETS CLOSED UNDER DESCENDANCE

We say that a subset S of a group G with weight function w is closed

under descendance if for every element g of S, all descendants of g are

in S, For example, if H is a normai'subgroup of G and if S is the set of
all elements of G that are of minimal weight in their H-coset, then the first
half of (2. 3) guarantees that S is closed under descendance,

Given (g, w) and a normal subgroup H of G, is it possible to choose a set
S of coset representatives, exactly one element of minimal weight from each
H-coset, such that the set S is closed under descendance? This cannot always

be done, as the following counterexample shows. Let (G, w) be the group of
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integers under addition modulo 8 with the weight function w of Sec. 2. Let
H be the subgroup {0, 4}. Since one of the elements 2 or 6 must be chosen
as a representative of the coset H+ 2 ={2, 6} , & set of representatives for
H-cosets must contain at least the six descendants of this element if the
set is closed under descendance. But there are only four H-cosets.

The results to be proved are as follows., We prove (4. 1) a sufficient "
condition (independent of H) that the answer to the above question be posi-
tive, We show (4.2) that this sufficient condition holds in a finite or count-
able direct product of groups each of which satisfies the condition. Finally
we show (4. 3) that the condition holds in the basic groups used in defining
direct product groups with Lee or Hamming weight.

(4.1) Let (G, w) have a well-ordering << such that
(4.1.1) w(x) < w(y) implies that x << y; and
(4.1.2)  if the relations [z; w, x,y] and [Z; w, X, y] hold in G, then x << x
implies z << z. ) ¢

If C is any subset of G, let C* be the least element of C under the well-
ordering 2<. Then for every normal subgroup H of G, the set S(H) of all

representatives Z* for cosets Z in the factor group G/H is a set of unique

coset representatives of minimal weight that is closed under descendance.
Proof. The relations [z; w,x,y] and [Z; w, X, y] imply that w(z) - w(z) =
w(x) - w(x). Thus if an ordering satisfi¢s (4.1, 1), it automatically satisfies
(4. 1.2) in all cases where w(x) # w(x). Note also that any well-ordering of
G that satisfies (4. 1. 1) is an extension of the partial ordering of descendance.
The existence of a well-ordering satisfying (4. 1, 1) implies that w is RWO.
We must show that, given the normal subgroup H, the set S(H) is cfosed
under descendance, Let Z be an H-coset, Z* = z, and let x be a descendant -

of z. Then for some elements w and y, the relation[z; w, x, y] halds in G.
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Let Hw = W, Hx = X and Hy = Y. By (2.3.1), the relation[Z; W, X, Y]
holds in G/H, and w, x, and y are elements of minimal weight in W, X,
and Y respectively. Suppose that x is not in S(H), that is, X* =X << x,
Letz =w X y. By (2.3,2), Z is an element (of minimal weight) in Z, and
the relation [Z; w, X, y] holds in G. By hypothesis (4.1.2), z << z since
X << x, a contradiction. Thus X* = x, and the set S(H) is closed under
descendance.

(4.2) LetG =1 Gi be the direct product of a finite or countable num-
ber of groups (Gi‘ wIi) for each of which the hypothesis of (4. 1) holds. Let

the weight function w on G defined by (1.6) be RWO. Then the hypothesis

of (4. 1) holds for (G, w).

Proof. We may assume that the index set I is either the set of positive
integers, or a finite initial segment 1, 2, ..., n of this set. By hypothesis,
each group (Gi‘ wi) has a well-ordering << that satisfies (4. 1.1) and (4. 1. 2),
We define an ordering on (G, w) as follows: x << X if (4. 2. 1) w(x) < w(x), or
if (4. 2. 2) w(x) = w(x), X, = ;Ei for i > j, and x:i << SEJ.. Recall that -for any
element x = (xi) of G, x; = e, for all except a finite number of components.
Thus, for any two elements x §# X of G, there must exist a greatest integer j
such that xj f SEJ.. The ordering << on G is at least a simple ordering, any
two elements of G are comparable.

We must show that the ordering << on G is a well-ordering, that is,
every nonempty subset C of G has a least element C*, The following con-
struction of nested subsets of C clearly leads to a least element. Choose
first the elements ¢ of minimal weight in C. These exist, since the weight
function on G is RWO by hypothesis. Of these, choose those elements ¢
for which the integer j such that c; =e for all i > j is minimal. Of these

choose the elements c¢ such that, successively, cj, cj-l’ . s Cqare least
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in the given orderings of Gj" cee s Gl' "
Our definition guarantees that (4. 1, 1) holds for the ordering << on G.
We proved that if w(x) # w(x), then (4. 1.1) implies (4.1.2). In the case
w(x) = w(x), suppose that the relations [z; w, x,y] and [ z; w, X, y] hold on
G. Then the highest integer j for which % and ?Ej disagree is the same as
the highest integer j for which zj and Ej disagree. In this case, the defini-
tion (4. 2, 2) reduces the verification of (4. 1. 2) on G to its verification on Gj’
where it holds by hypothesis. This completes the proof of (4. 2). |
(4.3) TheAhypothesis of (4. 1) can be satisfied for groups (G, w) of the
following types: (4.3.1) any group with coarse weight function for which
some well-ordering exists; (4. 3. 2) any cyclic group with weight function

defined by (1.5) for a set A ={b, b'lJ of generators. Indeed, in these cases,

any well-ordering that satisfieg (4.1.1) automatically satisfies (4.1.2).
Proof. It is clear that in either of these cases, a well-ordering *
satisfying (4.1.1) exists. We wish to show that such an ordering also
satisfies (4. 1.2). We need only consider the case z # z, w(z) = w(z), Sup-
pose we have verified in this case that the only coimmon descendant of z
and z is the identity element e of G. Then in the hypothesis of (4.1.2),
we must have w =y = e, whence x = z and X = z, and (4. 1. 2) holds. If the
group has coarse weight function, all elements other than the identity are
atoms, and two distinct atoms have only e as a common descendant. If
the group is a cyclic group with the given weight function, then there are
at most two elements bt and (b-l)t of weight t. If these elements are dis-
tinct, then the set of descendants of the first element contains exactly the
elements bi for 0 < i < t; and similarly for the second. If these sets have .
more than the element e in common, then the expressions bt and (b.l)t

[ ]
cannot be minimal expressions inthe generators. Thus our supposition
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holds in both cases,

It now follows, working backward, that the hypothesis and conclusion
of (4.1) can be satisfied for groups with Hamming or Lee weight, provided
that direct products of an at most countable number of basic groups are
allowed, and that each of the basic groups in the Hamming weight case can
be well-ordered.

Refﬁark. Slepian conjectured that the answer to the question considered
in this section was positive for a finite direct product of two-element groups,
and this was proved by E.F. Moore (unpublished, 1957). An affirmative
answer in the case of Lee weight was given by Prange (unpublished, 1959)
and it is this proof that is given above in a more abstract form. The ques-
tion is an interesting one, but I do not know of any application. See also

Peterson (1961),
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